

LinearBase
How-To Host a
Databank Program

Copyright LinearBase Limited 2024

LinearBase How-To Host a Databank Program

© LinearBase Limited 2024 v 0.1.0 1

Release 0.1

Included

• LinearBase.Host.zip

• LinearBase.Server.nuget available from https://nuget.org

• LinearBase.Client.nuget available from https://nuget.org

• Docker image linearbase/lineardb-amd64:latest available from https://hub.docker.com

Required Artifacts

• Databank files

• Databank Plain Old CLR Object (POCO) code

• LinearBase.Host test project

• Profiles supporting Standalone, Centralised, Decentralized, and Distributed
deployments

• Initializers for use with LinearBase.Host.exe

https://nuget.org/
https://nuget.org/
https://hub.docker.com/

LinearBase How-To Host a Databank Program

© LinearBase Limited 2024 v 0.1.0 2

Summary

Once created using the Transform or Model processes, the next step is to Host the Databank
files as in-memory Programs across devices and platforms such as smart-phones, tablets,
laptops, desktops, and servers.

There are two ways to achieve this

1. The developer includes the necessary Profile initiation instructions within mobile and
business Apps using either LinearBase.Server.nuget or LinearBase.Client.nuget
packages making data processing an integral aspect of the resulting deployment.

2. System Admins use the auto-generated initialization scripts to create micro-service
Program instances using the free-to-download Docker-on-Linux or
Linearbase.Host.exe programs.

Profiles control everything in LinearBase describing Programs to load, Program Locations,
Services to load, and Service Locations.

In this article we’ll cover how to compile and run the Example.Host project, auto-generated
for each successful Transform or Model process, and use auto-generated launch options to
create a Standalone Primary Active Realm Service (PARS) instance. Once we have an active
PARS instance we’ll run the Example.Host program as a Distributed Client communicating
with the PARS instance.

In this release Dynamic Client Port assignment is disabled, instead the initial PARS port value
is reused. If two or more instances are invoked on the same device, that is the same IP
address, it results in a warning saying Client not listening on port x as port already in use.

A future release will introduce the Profile Manager Portal to create and maintain Profiles
including Dynamic Client Port assignment. It does not affect this demonstration.

Download the LinearBase.Host.exe Program

If you have already downloaded and extracted the LinearBase.Host.exe prom you can skip
this section.

Host Program

Navigate to https://linearbase.co/#download

Click or tap the ‘Download Host’ button. This will download a 31Mb compressed file called
‘Host.zip to your device’s download folder.

https://linearbase.co/#download

LinearBase How-To Host a Databank Program

© LinearBase Limited 2024 v 0.1.0 3

Figure 1 Download Widows Host Program

Extract the compressed files to the folder, for example ‘E:\LinearBase’, by selecting Host.zip
and choosing the ‘Extract All…’ option from the context menu.

Unless you change the default options this will create a new folder E:\LinearBase\Host.

There are three files in the zip archive, once decompressed the file we’re interested in is
LinearBase.Host.exe. The program requires the other two support files to run.

The LinearBase.Host.exe program is initiated using launchOptions.json configuration file or
by command line arguments. The transformation process auto-generates these settings for
both options and writes them to the relevant Realm folder upon completion.

Inspect Source Files

Assuming successful transformation, navigate to the Realm path, for example
E:\LinearBase\Realms\Adventure.

In this example we’ll use the AdventureWorks2017.Sales Program created during the article
How-To Digitally Transform an Existing Database into a Databank Program and Code.

Auto-generated identifiers are unique so will not match those used in the example,
substitute your values where necessary.

Navigate to and open one of the Transformed or Modelled Schema folders.

If you haven’t done so already select Expand.ps1, right click and choose ‘Run with
PowerShell’. This generates another folder named ExampleHostConsole containing the zip
file contents.

Expand the …\ExampleHostConsole folder to inspect unzipped files…

Example.Host Project

Open Example.Host.csproj in Visual Studio, the current version is 2022, or VS Code.

Example.Host Program File

Open file Program.cs.

https://linearbase.com/documents/HowToTransform.pdf

LinearBase How-To Host a Databank Program

© LinearBase Limited 2024 v 0.1.0 4

This is a Generic Host implementation demonstrating the AddServiceExtension method. It
highlights how one line of code, AddSales() in the example, replaces all data connections,
data contexts, and scaffolding. The ‘Publish’ method in the extension class invisibly
populates the application with data from .data file created during the transformation
process along with any subsequent insert, update, or delete transaction actions.

To the developer, all data specific functionality is inline and part of the application logic.

Add further Add…() statements to register any mix of Programs (in-memory), Locations
(address of), and Services (logic).

AddSalesExtension File

Open file AddSalesExtension.cs. In the Create & Publish region there are two Boot
instructions and three Publish; all bar one are commented out.

As Sales was the first Transformation in the example article instruction B is uncommented. If
the Transformation or Modelling process appended a Program instruction D will be
uncommented.

To learn about Boot and Publish Profiles read the use-case article The 16 Configurable
Topologies of CloudLESS Data Processing.

In summary:

a. Profile type A – Boot. Start a Primary Active Realm Service (PARS) instance from the
file system. This is the controller in the default ‘Standalone’ state, that is there is
only system information loaded. The instance is listening on the configured port.
Clients initialize communication by initiating Profile C described below on application
load.

b. Profile type B – Publish. Start a Primary Active Realm Service (PARS) instance from
the file system and Publish a Databank Program into memory on the same instance.
The instance is listening for Client requests on the configured port. This is the
controller in a ‘Centralized’ state, that is there is system and Program information
loaded. Clients initialize communication by initiating Profile E described below on
application load. Alternatively, Clients can ingest the same Program using Profile D
described below. The Client acts as processor and/or server thereby distributing
processing to any device or platform simultaneously.

c. Profile type C – Boot. Join a Client application to a Realm but don’t load any
Programs. This allows the Client to listen for run-time instructions to load Realm
specific Programs on-demand using Profiles D or E described below.

d. Profile type D – Publish. Join a Client application to a Realm, if it isn’t joined already,
and load one or more Programs, Program Locations, Services or Service Locations.
Depending on the extension used the instance optionally acts as a Server listening
for other Client requests on the configured port. This is the Client in ‘Distributed’
state when inside the firewall and ‘Decentralized’ when outside.

e. Profile type E – Publish. Join a Client application to a Realm, if it isn’t joined already,
and load one or more Program Locations, or Services Locations. Here the Client
doesn’t perform any data processing and is considered an ‘Agent’.

https://linearbase.com/documents/HowToTransform.pdf
https://linearbase.com/media/sixteen.pdf
https://linearbase.com/media/sixteen.pdf

LinearBase How-To Host a Databank Program

© LinearBase Limited 2024 v 0.1.0 5

The benefit of Profiles is developers only programme once. The logic is constant, Profiles
dictate where the processing occurs across the enterprise. There are no data contexts or
connection strings; all communication is now managed by the LinearBase programming
language extensions Linearbase.Server and LinearBase.Client.

ExampleHostedServce File

Open file ExampleHostedService.cs.

The demonstration uses a Hosted Service. According to Microsoft a hosted service is a class
with background task logic that implements the IHostedService interface. We use this to
handle the Start and Stop tasks associated with the program which in turn invokes the
Read() and Write() methods on the Published Program.

ExampleReadWrite File

Open file ExampleReadWrite.cs.

Read Section

In the IExampleReadWrite implementation region examine the Read() method…

Figure 2 - Read Method

During the example Transformation process we identified SalesOrderHeader as the
Principal. The auto-generated code will use whatever you chose in your Transform or Model
process.

The Read<root-type>() method accepts any type in the Classes folder. The only caveat is
types entered as Where clause filters must be a nested type, that is a type equal or lower in
the hierarchical object graph. It cannot be a parent of the type or unrelated otherwise an
incident exception is raised.

Decide which type or types will feature in the Where clause, if any.

Optionally include one or more Where clause filters for the root type, the one specified in
Read<root-type>(), or any nested type <TN> including types in modelled relationships.
Relationship Modelling is a feature of the Domain Model Portal and available in a future
release.

Each Where clause accepts the type and a field name of the type upon which to filter. And +
Or Extension methods provide Where clauses chaining.

https://learn.microsoft.com/en-us/aspnet/core/fundamentals/host/hosted-services?view=aspnetcore-8.0&tabs=visual-studio

LinearBase How-To Host a Databank Program

© LinearBase Limited 2024 v 0.1.0 6

The Read<root-type>() method has four parameters, three required and one optional:

• Offset – one based record to start from within the result set, required

• Extent - number of records to return, maximum is 500, required
o 1 signifies return the first root-type instance, no array
o > 1, return an Collection<root-type> of instances
o < 0, return an Collection<root-type> of instances in reverse order

• Where – optional, in the form of a single Where followed by one or more And + Or
o _hcd.Where<TN>(nameof(TN.TypeFieldName), Criteria.EqualTo("Some

Value")),
o .And<TN>(nameof(TN.TypeFieldName), Criteria.Between("Lower Value",

"Upper Value"))
o .Or<TN>(nameof(TN.TypeFieldName), Criteria.GreaterThan("Some Value"))
o Etc.

• CancellationToken - required

In this example we’ll use Offset 1, Extent 20 and Where clause on
SalesOrderHeader.CustomerID knowing SalesOrderHeader with CustomerID 11019 has 17
records:

_hcd.Where<SalesOrderHeader>(nameof(SalesOrderHeader.CustomerID), Criteria.EqualTo(“11019”)),

Read returns an instance of a Graph object containing the resulting object graph binary and
paging information.

Paging has four properties

• Page – the returned page

• Of – the total number of possible pages for the given Read criteria

• Count – the number of records in this page, aligned to Extent, current limit is 500

• From – the total number of records for the given Read criteria

To deserialize the Graph.Binary into an instance or instances of the principal object call
graph.Product().

For example, when extent = 1 pass Product() the principal type only, i.e.,

 var product = graph.Product<SalesOrderHeader>();

For any other extent pass Product() a collection, i.e.,

 var product = graph.Product<Collection<SalesOrderHeader>>();

Place an optional breakpoint on the ‘var product’ line to inspect the returned object graph.

Write Section

There are two approaches to creating a Databank and code, data-first and code-first.

The article How-To Digitally Transform an Existing Database into a Databank Program and
Code explains data-first. When using this method associations between objects use the
Entity Relational approach, that is, the parent object has the key and the child holds a
reference to the key, the foreign key.

https://linearbase.com/documents/HowToTransform.pdf
https://linearbase.com/documents/HowToTransform.pdf

LinearBase How-To Host a Databank Program

© LinearBase Limited 2024 v 0.1.0 7

The article How-To Digitally Model a New Databank Program and Code explains code-first.
When using this method associations between objects use the Object Relational approach,
that is, the child object has the key and the parent holds a reference to the key, the foreign
key.

Typically, an automatic unique sequence generator or some other manual method manages
key allocation, LinearBase is no different. As LinearBase is naturally distributed a random
context unique identifier is used, referred to as an Id8. To accommodate this, primary and
foreign key fields become read-only text fields regardless of their original data type.

Data-first or code-first dictates whether or not primary and foreign keys are visible in code.
Data-first has them, code-first does not, they’re implied by object references.

With the data-first approach you’ll see primary and foreign key fields as read-only
properties in classes and interfaces. When creating instances, the constructor controls how
to populate fields depending on whether they’re new or pre-existing, that is, created during
a Read() request.

Regardless of data-first or code-first, the Read and Write process automatically manages
and assigns primary and foreign key allocations. Do not populate these fields.

A single line of code controls the entire transactional insert and update process. Delete
functionality omitted for this release.

Figure 3 - Write Method

The Write method accepts an instance or collection of instances of any object hierarchy in
the Classes folder. The process detects ANY changes within the supplied object graph and
transactionally persists updates to the correct Databanks and Programs.

To save a change, first create a new object instance or read an existing instance by repeating
the Read process above. Update one or more fields and call _hcd.Write(…) to distribute and
persist the changes, it is that simple.

Decide upon the class to create. Modify the ‘var instance = new …’ signature passing the
relevant values. Create an entire new object graph if the new instance is complex and
contains references to other types.

As mentioned earlier, identity fields become read-only during the transformation process;
the write process manages their population and associations.

On completion, the Write(…) process returns a Statistics instance detailing the outcome of
the operation. The primary notifier is the statistics.Continuum.Acidity value. On a successful
operation the response is Reference.Acidity.Committed, responses other than this signify
failure, such as a data consistency violation. In these situations, the RevisionId field contains
a reference to the incident.

https://linearbase.com/documents/HowToModel.pdf

LinearBase How-To Host a Databank Program

© LinearBase Limited 2024 v 0.1.0 8

Test It

The application is a simple demonstration of how to host the service with integrated data
processing within a program with basic run-once read and write examples.

Compile and run the application.

Figure 4 - Example Host Program Output

The output shows the Read request returned 17 results as expected in our test data
example.

Initialization Scripts

Each successful deployment auto-generates four initialization scripts prefixed by the
supplied Alias, in the example it’s Sales, saved to the ‘initializers’ folder under the Realm
name folder.

Each file contains the five Profile scenarios discussed earlier covering Standalone,
Centralized, Distributed, and Decentralized deployments.

LinearBase How-To Host a Databank Program

© LinearBase Limited 2024 v 0.1.0 9

Command Lines

Figure 5 - Sales Command Lines

Command lines is used in conjunction with LinearBase.Host.exe. Open a Command window
and change directory to the one containing LinearBase.Host.exe. This executable is a
wrapper around LinearBase.Server and will listen for Client requests on the supplied port.
Change the port number of the relevant Profile instruction to between 2000 and 65535.
Copy and paste the instruction into the command window and press return.

Initializers

Figure 6 - Sales Initializers

Initializers are for use in AddService.cs extension file added to solution folder. It is possible
to include more than one Profile, and therefore Program, at startup by adding multiple
Publish instructions.

LinearBase How-To Host a Databank Program

© LinearBase Limited 2024 v 0.1.0 10

Launch Options

Figure 7 - Sales Launch Options

LinearBase.Host.exe initially checks for the existence of command lines before checking for
the launch options configuration file launchOptions.json.

Navigate to the folder containing LinearBase.Host.exe and open file launchOptions.json.
Change the port number of the relevant Profile instruction to between 2000 and 65535.
Copy and paste the instruction into launchOptions.json overwriting the existing values. Save
the changes. Select LinearBase.Host.exe and run the program by right clicking and selecting
‘Open’ from the context menu or double clicking or double tapping the program.

LinearBase How-To Host a Databank Program

© LinearBase Limited 2024 v 0.1.0 11

Docker Compose

Figure 8 - Sales Docker Compose

Docker is out of scope for this article however the file docker-compose.yml contains the
relevant environment variables.

As this release reuses the specified PARS port across associated Realm initializations the
Docker setup requires the use of a VLAN network to host images on individual IP addresses.
A future release will include the Profile Manager Portal to allow for custom port assignment.

Model

To create a new Databank with associated code without using an existing database read the
article the How-To Digitally Model a New Databank Program and Code.

Next Steps

Develop enterprise scale data driven software solutions without the need for traditional
databases. LinearBase support simultaneous deployments across Windows, Android, iOS,
Mac and Linux, with Docker-on-Linux for servers.

Add inline distributed relational data processing client functionality and server capability to
any .NET application by:

https://linearbase.com/documents/HowToModel.pdf

LinearBase How-To Host a Databank Program

© LinearBase Limited 2024 v 0.1.0 12

1. add the AddService.cs file, contained in the Extension.zip folder, to the project
solution folder

2. initiate the service by adding Add???() to the program.cs ConfigureServices section,
in the example this is AddSales()

3. include a reference in the .csproj file to one of the two LinearBase NuGet packages
a. LinearBase.Server, does not support Android in this release
b. LinearBase.Client, does not listen for requests from other Clients

Finally, help us improve the software by giving feedback to feedback@linearbase.com

mailto:feedback@linearbase.com

LinearBase How-To Host a Databank Program

© LinearBase Limited 2024 v 0.1.0 13

Figure 1 Download Widows Host Program .. 3

Figure 2 - Read Method ... 5

Figure 3 - Write Method .. 7

Figure 4 - Example Host Program Output .. 8

Figure 5 - Sales Command Lines .. 9

Figure 6 - Sales Initializers .. 9

Figure 7 - Sales Launch Options ... 10

Figure 8 - Sales Docker Compose ... 11

